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Roundoff Error Differences

Between the Cray-2 and Cray Y-MP

Neil McCown

Introduction

The Numerical Aerodynamic Simulation (NAS) Facility at

NASA Ames Research Center is a leading center for state of the art

scientific supercomputing. The typical computational problems

attacked at NAS include large scale Computational Fluid Dynamics

(CFD), structural dynamics, and computational chemistry simulations.

NAS currently has two High Speed Processors (HSP's): a Cray 2, with

256 megawords (MW) of memory, 4 processors, and a 4.1 nanosecond

(ns) clock cycle; and a Cray Y-MP 8-128, with 128 MW memory, 8

processors, and a 6.0 ns clock cycle.

Although the the Cray-2 and Y-MP at NAS have significant

architecture differences, their floating point architectures are quite

similar, and might be expected to produce similar computational

results. However, a significant disagreement in the error of the

solution to a numerical simulation produced on each machine by a

NAS user was recently discovered. An investigation into the extent of

the problem was undertaken, part of which is described below. The

remaining details may be found in [1]. Specific issues addressed below

include the relationship between problem size and the severity of the

disagreement and whether this disagreement might affect the

procurement of future HSPs.

The simulation modelled the aeroelastic behavior of the Space

Shuttle's Solid Rocket Boosters. The model uses a variant of Cholesky

factorization to solve a large sparse positive definite band matrix. On

each Cray, seven tests were conducted that utilized FORTRAN

LINPACK routines to solve linear systems similar to those of the

simulation. Of these tests, four provided information on the total error

arising in the solution of a model PDE, and three concerned the
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roundoff error arising in the solution of a simple matrix relation.

When the seven sets of output were compared to the known exact

(analytical) solution, the logarithm of the error was found to grow

linearly with the logarithm of the problem size. By extrapolating these

trends, predictions were made regarding the severity of the uncovered

discrepancy in future supercomputers.

Procedure

Four of the test problems that provided data for these predictions

solved Laplace's equation on the unit square:

°_2u + _2U - V2u = 0

_x 2 o_y2

where u = f(x,y) for 0 < x < 1 and 0 < y < 1 on the boundary of the region.

Laplace's equation was chosen because it is the simplest PDE which

produces a banded symmetric positive definite matrix, the exact

solutions for numerous boundary conditions were readily available,

and the simplicity of the problem allowed the floating point operations

to be modelled analytically.

The model PDE was discretized using central differences [2]. This

method uses the approximation:

+

where u is the exact solution and U is the solution to the discretized

problem. From this relation, Laplace's equation at (i,j) becomes:

+ =0

where Ax and Ay represent the distance between nodes in the

horizontal and vertical directions, respectively, and AU represents the

change in U in the specified direction.
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Over the grid:

Ui-l,j

Ui,,_1
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Ui,;-.1

U_l.1 ,j

Un-1 ,n-1

Un-1,1

the grid spacing h is uniform, since Ax = Ay = h. Therefore,

((0 0i))h _ "(°'"+h°'")i=o
h

and, simplifying,

4Ui,j - Ui-l,j - Ui+l,j - Ui,j-1 " Ui,j+l = O.

The entire set of algebraic equations is then solved simultaneously to

determine the unknowns. Since the solutions at the grid boundaries

are specified in the problem, equations are needed only for interior

nodes.

The system of equations is then assembled into a coefficient

matrix A. In describing the matrix A, Nx and Ny are defined as the

number of nodes in the coordinate directions and n the order of the

system:

n = (Nx- 1)2 =(Ny- 1)2

The first element of each row corresponds to the U(1,1) term, the

second to the U(1,2) term, the (Nx-1)th to the U(1,n-1) term, the nth to



the U(2,1) term, and the last to U(n-l,n-1); n is the dimension of the

matrix. Equations for the nodes closest to the boundaries have

constants (for the known boundary conditions); these terms are

collected in the right hand side vector b. The set of equations leads to

the matrix relation:
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where bl, b2, b3, and b4 represent the boundary conditions at y=0, x=l,

y=l, and x=0, respectively.

The boundary conditions and analytical (exact) solutions

distinguished the four model problems, obtained from [3] and [4]. These

were:

model probleml, for O<x<l, O<y<l,

u(x,O) = sin 2 nx,

u(x,1) = u(O,y) = u(1,y) = 0

exact solution:
oo

sinh (2 n- 1)(7t- y) sin (2 n- 1)x ;
u(x,y) = -(8/_)_(2n 3)}4n 2-- 1) sinh (2n-1_

model problem 2, for O<x<l, O<y<l,

u(x,O) = x2n 3 (l-x),

u(x,1) = u(0,1) = u(1,1)

exact solution:

=0
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u(x,y) -4_[1 +2(- 1)n] sinh n(_- y) sin nx ;
n3 sinh n_

model problem 3, for

exact solution:

u(x,y)

O<x<l, O<y<l,

u(x,O) = u(x,1) = x2/_ 2,

u(O,y) = O,
2

u(1,y) =

= _x-(8/n)_(2n-1)3c°sh(2n'l)_, _'y) sin(2n-1)x;

1 cosh (n- _-_

model problem 4, for 0<x<l, 0<y<l,

u(x,O) = u(x,1) = t 2x for 0 < x < 0.5,
2-2x for 0.5<x< 1,

u(O,y) = u(1,y) = 0

exact solution:

{8/ 2__ sin-_[sinh nny + sinh n_(1-y)]u(x,y)
1 n2 sinh n_

sin nnx .

Since the analytical solution to each model problem was an infinite

series, a subroutine was written to find the sum using a DO loop.

Although Laplace's equation was a convenient PDE for

examining error growth, two additional errors arose that obscured the

effects of roundoff error. The first was discretization error in the

solution, a result of the approximate nature of the finite differences

method. The second was roundoff error in the right hand side vector b,

due to the fact that the machine rounded off of entries (boundary

conditions) not exactly representable as binary floating point numbers.

Three additional tests, suggested by L. Lustman of NAS, were therefore

developed to avoid these errors. These three tests solved the matrix

relation Ax=b, A being the matrix generated by the central differences

method, were therefore developed to avoid these errors. These three

tests solved the matrix relation Ax=b, A being the matrix generated by

the central differences method, and x one of three pre-defined one-

dimensional vectors:
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case1,

=[I ,I ,... I]
n = 1600, 6400, 14400;

case 2,

x2=[ 4oooo, 2 x.4-_., 3 xKE_-.O-.... i x-t-_ .... (n-1)x-_O-P_.P-, 40000] r

n = 64, 400, 6400, 40000

2 x _, 3 x-_-_ .... i x 99ne_Ss.... (n-1)x'°_ s---_8' 99856] T

n = 256, 1024, 16384, 99856

The machine being tested represented each x vector exactly, without

rounding off any entries. Since all entries in the A matrix were

integers, the product of the matrix multiplication was also represented

exactly. Consequently, it had no roundoff error. The test code itself

computed this right hand side vector, then passed it to the LINPACK

matrix solver subroutines. By comparing the solution returned to the

original vector x, machine roundoff error could be examined more

accurately, without the errors of the finite differences method.

The LINPACK collection [5] provides a pair of subroutines,

SGEFA and SGESL, which solve general square matrices such as the

coefficient matrix. The fact that the coefficient matrix, which had as

many elements as the square of the number of interior nodes, exceeded

the Y-MP's memory limitation with a relatively large grid spacing

limited the usefulness of these routines. The SPBFA and SPBSL

subroutines alleviate this problem by taking advantage of the banded,

symmetric nature of the coefficient matrix. Rather than operate on the

entire matrix, they required a matrix with only those elements above

the main diagonal and within the band. For example, consider a

symmetric matrix of order seven and with two bands above the main

diagonal in the form used by SGEFA and SGESL:
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11 12 13 0 0 0 0

12 22 23 24 0 0 0

13 23 33 34 35 0 0

0 24 34 44 45 46 0

0 0 35 45 55 56 57

0 0 0 46 56 66 67

0 0 0 0 57 67 77

If SPBFA and SPBSL solved the same matrix, however, the following

form would be used:

* * 13 24 35 46 57

* 12 23 34 45 56 67

11 22 33 44 55 66 77

where the *s denote elements that are not used.

Individual jobs were submitted to the NAS Network Queuing

System (NQS). The Y-MP's upper NQS memory limit is 64 megawords,

and since each element is a word, the programs were limited to 64

million array elements. Since the program required a one dimensional

array with n elements for the exact solution and for the numerical

solution, and a two dimensional array with elements for the band

matrix, the total number of array elements was:

elements = n + n + (Nx-1)n = 3n + (Nx-2)n,

but since n = (Nx-2) 2, this equation simplified to:

elements = (Nx-2) 3 + 3(Nx-2) 2

For 64 million elements, (Nx-2) was found to be 399 and the maximum

order of the linear system 15920 2. If SGEFA and SGESL were used

instead of SPBFA and SPBSL, a two dimensional array with n x n

elements would be required. The program would use a total of (Nx-2) 4 -

2(Nx-2) 2 elements, which would limit the order to 79999.

Finally, the solution vector returned by SPBSL was used to

obtain the relative and absolute error. The maximum norm of the
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difference between this vector and the analytical solution is defined as

the absolute error; the quotient of the absolute error and the maximum

norm of the analytical solution is the relative error.

That is:

absolute error = I analytical solution - numerical solution ]-

I absolute error Irelative error =
I analytical solution l=

For the three tests that did not solve Laplace's equation, the x1, x2, and

x3 matrices replaced the analytical solution.

In addition to varying the problem's boundary conditions,

solutions were obtained for a range of grid spacings. A UNICOS bourne

shell script file was created that compiled and executed each program

with a grid spacing of 1/10. Then, using a borne shell do...done loop

and the sed command, the script decremented the spacing by 1/10 to

the minimum allowable value. Since grid spacing was directly related

to problem size, the maximum order of 159202 resulted in a minimum

grid spacing of 1/400.

Each job, consisting of 40 runs, was broken down into several

smaller jobs. As much data as possible was obtained using the daytime

NQS queues, which allowed grid spacings down to 1/250. The job

accounting reports indicated that the remaining solutions would

require approximately 6000 seconds on the Y-MP, and 10000 seconds on

the Cray-2. Since these jobs would be in relatively large queues, only

two jobs could be submitted at a time. Those queues are not normally

activated daily and generally have several other very large jobs waiting

to execute. Model problem 4 was therefore the only problem executed

with every remaining grid spacing, time constraints prevented the

execution of problems 1, 2, and 3 with all grid spacings. For these

problems, predictions were made from the day NQS jobs and from a

night NQS job at the minimum grid spacing (1/400).
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Results

The difference between the relative errors on the Y-MP and the

Cray-2, ae, was obtained for each run from the relation:

Ae = relative error Y-MP - relative error Cray-2

Although small compared to the relative error, ae was increased as

grid spacing decreased. Plot I is a graph of the logarithm of ae versus

the logarithm of the number of nodes for each of the tests conducted.

Least squares model fits, with coresponding correlation coefficients in

Table 1. With the exception of the Model 4 run, the data show

differences in relative error that vary as a power of n with exponents

larger than expected maximum exponent of one. Thus, it can be

expected that for increasing n, a point will be reached at which the

dominant error component for Y-MP computed solutions of the

examined model problems will be due to the particular characteristics

of Y-MP floating point arithmetic.

Test case De model Correlation De extrapolation

fit Coefficient to TFLOP system

Model 1 10 -16.1 nTM 1.000 6.58 x 10 -7

Model 2 10 -15.3 n1-°1 0.998 1.60 x 10 -8

Model 3 10 -15-7 n 1.40 1.000 5.75 x 10 -6

Model 4 10 -15.1 n°.85 0.999 1.57 x 10 -5

Test I 10 -15.4 n TM 1.000 3.93 x 10-6

Test 2 10 -17.3 n 1.75 0.999 5.23 x 10 -5

Test 3 10 -15.4 n TM 1.000 3.36 x 10-6

Table 1.
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Effect of Teraflop System Sized Problems on Accuracy

Although Ae was small in the data collected, the fact that it

increased indicates that it could be substantial in larger machines. The

capabilities of large scale computer systems are projected to increase

significantly in the next ten years. Projections of the systems to be

installed at NAS, provided by D. Pase at NAS, indicate that these

systems will eventually exceed a Teraflop in computation rate. These

systems would have in excess of 1.37 x 1011 words of main memory,

which corresponds to:

1.37 x 1011 words = (Nx-2) 3 + 3(Nx-2) 2

(Nx-2) = 5159.65

(Nx-2) 2 = n = 2.66 x 107

and using Test 2,

De = 10 -17.3 (2.66 x 107) 1.75

= 5.23 x 10 -5

Thus for this size problem and the Test 2 right hand side, Y-MP

floating point arithmetic is expected to produce a result that differs in

the 5th decimal digit from the result expected from Cray 2 floating

point arithmetic. Estimates for the other six test cases are listed in

Table 1 in the column labeled "De extrapolation to TFLOP system."

Summary

The results of this investigation show that for the model

problems examined, a significant correlation exists between the size of

the problem and the amount the Y-MP and Cray-2 differ in relative

error. While this conclusion may not hold for every application,

banded symmetric matrices appear frequently in many common

applications, and the results indicate that for these types of problems

Cray 2 arithmetic is preferable, particularly as the problem size scales to

the capacity of future supercomputers.
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